ComenzarEmpieza gratis

Differentiating distance metrics

It is crucial to capture the subtle differences between the manhattan, euclidean and Minkowski distance metrics. Using them correctly ensures the optimal performance of outlier classifiers on various datasets.

Remember from the formula that changing the parameter p will switch between euclidean, manhattan and other degrees of the Minkowski distance.

The formula to calculate the minkowski distance.

Este ejercicio forma parte del curso

Anomaly Detection in Python

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empieza el ejercicio