ComenzarEmpieza gratis

Histograms for outlier detection

A histogram can be a compelling visual for finding outliers. They can become apparent when an appropriate number of bins is chosen for the histogram. Recall that the square root of the number of observations can be used as a rule of thumb for setting the number of bins. Usually, the bins with the lowest heights will contain outliers.

In this exercise, you'll plot the histogram of prices from the previous exercise. numpy and matplotlib.pyplot are available under their standard aliases.

Este ejercicio forma parte del curso

Anomaly Detection in Python

Ver curso

Instrucciones del ejercicio

  • Find the square root of the length of prices and store it as n_bins.
  • Cast n_bins to an integer.
  • Create a histogram of prices, setting the number of bins to n_bins.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Find the square root of the length of prices
n_bins = ____

# Cast to an integer
n_bins = ____(____)

plt.figure(figsize=(8, 4))

# Create a histogram
plt.____(____, ____=____, color='red')
plt.show()
Editar y ejecutar código