LoslegenKostenlos loslegen

Visualizing decision & margin bounds using `plot()`

In this exercise, you will rebuild the SVM model (as a refresher) and use the built in SVM plot() function to visualize the decision regions and support vectors. The training data is available in the dataframe trainset.

Diese Übung ist Teil des Kurses

Support Vector Machines in R

Kurs anzeigen

Anleitung zur Übung

  • Load the library needed to build an SVM model.
  • Build a linear SVM model using the training data.
  • Plot the decision regions and support vectors.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

#load required library
library(___)

#build svm model
svm_model<- 
    svm(y ~ ., data = ___, type = "C-classification", 
        kernel = "___", scale = FALSE)

#plot decision boundaries and support vectors for the training data
plot(x = svm_model, data = ___)
Code bearbeiten und ausführen