Using `tune.svm()`
This exercise will give you hands-on practice with using the tune.svm() function. You will use it to obtain the optimal values for the cost, gamma, and coef0 parameters for an SVM model based on the radially separable dataset you created earlier in this chapter. The training data is available in the dataframe trainset, the test data in testset, and the e1071 library has been preloaded for you. Remember that the class variable y is stored in the third column of the trainset and testset.
Also recall that in the video, Kailash used cost=10^(1:3) to get a range of the cost parameter from 10=10^1 to 1000=10^3 in multiples of 10.
Diese Übung ist Teil des Kurses
Support Vector Machines in R
Anleitung zur Übung
- Set parameter search ranges as follows:
cost- from 0.1 (10^(-1)) to 100 (10^2) in multiples of 10.gammaandcoef0- one of the following values: 0.1, 1 and 10.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
#tune model
tune_out <-
tune.svm(x = trainset[, -3], y = trainset[, 3],
type = "C-classification",
kernel = "polynomial", degree = 2, cost = 10^(___:___),
gamma = c(___, ___, ___), coef0 = c(0.1, 1, 10))
#list optimal values
tune_out$best.parameters$___
tune_out$best.parameters$___
tune_out$best.parameters$___