Applying confidence intervals
In practice, you aren't going to hand-code confidence intervals. Let's utilize the statsmodels package to streamline this process and examine some more tendencies of interval estimates.
In this exercise, we've generated a binomial sample of the number of heads in 50 fair coin flips saved as the heads variable. You'll compute a few different confidence intervals for this sample, and then scale your work for 10 similar samples.
The proportion_confint() function has already been imported to help you compute confidence intervals.
Diese Übung ist Teil des Kurses
Practicing Statistics Interview Questions in Python
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Compute and print the 99% confidence interval
confidence_int = proportion_confint(heads, ____, ____)
print(____)