Maximization function
We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation
function. Now, create the maximization
function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.
Diese Übung ist Teil des Kurses
Mixture Models in R
Anleitung zur Übung
Create the function maximization
by completing the sample code.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
maximization <- function(___){
means_estimates <- data_with_probs %>%
summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
mean_2 = sum(x * ___) / ___(prob_cluster2)) %>%
as.numeric()
props_estimates <- data_with_probs %>%
summarise(proportion_1 = ___(prob_cluster1),
proportion_2 = 1 - ___) %>%
as.numeric()
list(means_estimates, props_estimates)
}