LoslegenKostenlos loslegen

Maximization function

We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation function. Now, create the maximization function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.

Diese Übung ist Teil des Kurses

Mixture Models in R

Kurs anzeigen

Anleitung zur Übung

Create the function maximization by completing the sample code.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

maximization <- function(___){
  means_estimates <- data_with_probs %>%
    summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
              mean_2 = sum(x * ___) / ___(prob_cluster2)) %>% 
    as.numeric()
  props_estimates <- data_with_probs %>% 
    summarise(proportion_1 = ___(prob_cluster1),
              proportion_2 = 1 - ___) %>% 
    as.numeric()
  list(means_estimates, props_estimates)   
}
Code bearbeiten und ausführen