Expectation function
So far, you have learned how the Expectation-Maximization algorithm is used to estimate the parameters of two Gaussian distributions with both sd equal 1. The aim of this exercise is to create the function expectation, which generalizes the step of estimating the probabilities when we know the means, proportions and the sds.
Diese Übung ist Teil des Kurses
Mixture Models in R
Anleitung zur Übung
Create the function expectation by completing the sample code. Observe that we are now considering the standard deviations of each cluster as its fourth parameter.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
expectation <- ___(___, means, proportions, ___){
# Estimate the probabilities
exp_data <- data %>%
mutate(prob_from_cluster1 = ___[1] * dnorm(x, mean = means[1], sd = ___[1]),
prob_from_cluster2 = ___[2] * dnorm(x, mean = means[2], sd = ___[2]),
prob_cluster1 = prob_from_cluster1/(prob_from_cluster1 + prob_from_cluster2),
prob_cluster2 = prob_from_cluster2/(prob_from_cluster1 + prob_from_cluster2)) %>%
select(x, ___, ___)
# Return data with probabilities
return(exp_data)
}