Plot the estimated clusters
At this point, you have discovered the two cluster in the data frame gaussian_sample. In this exercise, you will visualize how the estimated clusters for the iteration 10 fit the data. The vectors means_iter10 and props_iter10 are already saved in the environment.
To this end, you will use the ggplot2 function called stat_function(), which lets you superimpose a function on top of an existing plot. The function you will use a created curve function called fun_gaussian() which takes as arguments the mean and the proportion of the Gaussian.
Diese Übung ist Teil des Kurses
Mixture Models in R
Anleitung zur Übung
Plot the histogram in density mode of the variable x and add the estimated curves using stat_function() in combination with the function fun_gaussian().
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
___ %>%
ggplot() + geom_histogram(aes(x = ___, y = ___), bins = 200) +
stat_function(geom = "line", fun = fun_gaussian,
args = list(mean = means_iter10[1], proportion = ___[1])) +
stat_function(geom = "line", fun = fun_gaussian,
args = list(mean = ___[2], proportion = props_iter10[2]))