LoslegenKostenlos loslegen

Dropping unnecessary features

Some features such as 'Area_Code' and 'Phone' are not useful when it comes to predicting customer churn, and they need to be dropped prior to modeling. The easiest way to do so in Python is using the .drop() method of pandas DataFrames, just as you saw in the video, where 'Soc_Sec' and 'Tax_ID' were dropped:

telco.drop(['Soc_Sec', 'Tax_ID'], axis=1)

Here, axis=1 indicates that you want to drop 'Soc_Sec' and 'Tax_ID' from the columns.

Diese Übung ist Teil des Kurses

Marketing Analytics: Predicting Customer Churn in Python

Kurs anzeigen

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Drop the unnecessary features
telco = ____
Code bearbeiten und ausführen