Training another scikit-learn model
All sklearn
models have .fit()
and .predict()
methods like the one you used in the previous exercise for the LogisticRegression
model. This feature allows you to easily try many different models to see which one gives you the best performance. To get you more confident with using the sklearn
API, in this exercise you'll try fitting a DecisionTreeClassifier
instead of a LogisticRegression
.
Diese Übung ist Teil des Kurses
Marketing Analytics: Predicting Customer Churn in Python
Anleitung zur Übung
- Import
DecisionTreeClassifier
fromsklearn.tree
. - Instantiate the classifier, storing the result in
clf
. - Train the classifier to the data. The features are contained in the
features
variable, and the target variable of interest is'Churn'
. - Predict the label of
new_customer
.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Import DecisionTreeClassifier
# Instantiate the classifier
# Fit the classifier
# Predict the label of new_customer
print(____)