Visualizing feature importances
Your random forest classifier from earlier exercises has been fit to the telco data and is available to you as clf. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib's barh to create a horizontal bar plot of feature importances.
Diese Übung ist Teil des Kurses
Marketing Analytics: Predicting Customer Churn in Python
Anleitung zur Übung
- Calculate the feature importances of
clf. - Use
plt.barh()to create a horizontal bar plot ofimportances.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Calculate feature importances
importances = ____.____
# Create plot
____.____(range(X.shape[1]), ____)
plt.show()