LoslegenKostenlos loslegen

Visualizing feature importances

Your random forest classifier from earlier exercises has been fit to the telco data and is available to you as clf. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib's barh to create a horizontal bar plot of feature importances.

Diese Übung ist Teil des Kurses

Marketing Analytics: Predicting Customer Churn in Python

Kurs anzeigen

Anleitung zur Übung

  • Calculate the feature importances of clf.
  • Use plt.barh() to create a horizontal bar plot of importances.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Calculate feature importances
importances = ____.____

# Create plot
____.____(range(X.shape[1]), ____)
plt.show()
Code bearbeiten und ausführen