Visualizing feature importances
Your random forest classifier from earlier exercises has been fit to the telco
data and is available to you as clf
. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib
's barh
to create a horizontal bar plot of feature importances.
Diese Übung ist Teil des Kurses
Marketing Analytics: Predicting Customer Churn in Python
Anleitung zur Übung
- Calculate the feature importances of
clf
. - Use
plt.barh()
to create a horizontal bar plot ofimportances
.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Calculate feature importances
importances = ____.____
# Create plot
____.____(range(X.shape[1]), ____)
plt.show()