Improving the plot
In order to make the plot more readable, we need to do achieve two goals:
- Re-order the bars in ascending order.
- Add labels to the plot that correspond to the feature names.
To do this, we'll take advantage of NumPy indexing. The .argsort()
method sorts an array and returns the indices. We'll use these indices to achieve both goals.
Diese Übung ist Teil des Kurses
Marketing Analytics: Predicting Customer Churn in Python
Anleitung zur Übung
- Calculate the sorted indices of
importances
by usingnp.argsort()
onimportances
. - Create the sorted labels by accessing the columns of
X
and indexing bysorted_index
. - Create the plot by indexing
importances
usingsorted_index
and specifying the keyword argumenttick_label=labels
.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Sort importances
sorted_index = ____(____)
# Create labels
labels = X.columns[____]
# Clear current plot
plt.clf()
# Create plot
plt.barh(range(X.shape[1]), importances[____], tick_label=____)
plt.show()