LoslegenKostenlos loslegen

Tuning preparation

Tuning preparation is the foundation for tuning success. There are two main steps in preparing your tuning: marking hyperparameters using tune() in the model specification and creating a grid of hyperparameters that is used in tuning.

You are going to execute these two fundamental steps of the tuning process in this exercise.

Diese Übung ist Teil des Kurses

Machine Learning with Tree-Based Models in R

Kurs anzeigen

Anleitung zur Übung

  • Create a boosting specification with an "xgboost" engine for a classification model using 500 trees and mark the following parameters as tuning parameters: learn_rate, tree_depth, and sample_size. Save the result as boost_spec.
  • Build a regular tuning grid for the tuning parameters of boost_spec with three levels for each parameter.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Create the specification with placeholders
boost_spec <- boost_tree(
                trees = ___,
                ___,
                ___,
                ___) %>%
  set_mode(___) %>%
  set_engine(___)

# Create the tuning grid
tunegrid_boost <- ___(___, 
                      levels = ___)

tunegrid_boost
Code bearbeiten und ausführen