Checking for statistical significance
Now that you have an intuitive understanding of statistical significance and p-values, you will apply it to your test result data.
The four parameters needed for the p-value function are the two conversion rates - cont_conv
and test_conv
and the two group sizes - cont_size
and test_size
. These are available in your workspace, so you have everything you need to check for statistical significance in our experiment results.
Diese Übung ist Teil des Kurses
Customer Analytics and A/B Testing in Python
Anleitung zur Übung
Find the p-value of our experiment using the loaded variables cont_conv
, test_conv
, cont_size
, test_size
calculated from our data. Then determine if our result is statistically significant by running the second section of code.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Compute the p-value
p_value = get_pvalue(con_conv=____, test_conv=____, con_size=____, test_size=____)
print(p_value)
# Check for statistical significance
if p_value >= 0.05:
print("Not Significant")
else:
print("Significant Result")