BaşlayınÜcretsiz Başlayın

Using the MSELoss

For regression problems, you often use Mean Squared Error (MSE) as a loss function instead of cross-entropy. MSE calculates the squared difference between predicted values (y_pred) and actual values (y). Now, you'll compute MSE loss using both NumPy and PyTorch.

torch, numpy (as np), and torch.nn (as nn) packages are already imported.

Bu egzersiz

Introduction to Deep Learning with PyTorch

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Calculate the MSE loss using NumPy.
  • Create an MSE loss function using PyTorch.
  • Convert y_pred and y to tensors, then calculate the MSE loss as mse_pytorch.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

y_pred = np.array([3, 5.0, 2.5, 7.0])  
y = np.array([3.0, 4.5, 2.0, 8.0])     

# Calculate MSE using NumPy
mse_numpy = ____

# Create the MSELoss function in PyTorch
criterion = ____

# Calculate MSE using PyTorch
mse_pytorch = ____(torch.tensor(____), ____)

print("MSE (NumPy):", mse_numpy)
print("MSE (PyTorch):", mse_pytorch)
Kodu Düzenle ve Çalıştır