BaşlayınÜcretsiz Başlayın

Train a deep CNN with pooling to classify images

Training a CNN with pooling layers is very similar to training of the deep networks that y have seen before. Once the network is constructed (as you did in the previous exercise), the model needs to be appropriately compiled, and then training data needs to be provided, together with the other arguments that control the fitting procedure.

The following model from the previous exercise is available in your workspace:

Convolution => Max pooling => Convolution => Flatten => Dense

Bu egzersiz

Image Modeling with Keras

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Compile this model to use the categorical cross-entropy loss function and the Adam optimizer.
  • Train the model for 3 epochs with batches of size 10.
  • Use 20% of the data as validation data.
  • Evaluate the model on test_data with test_labels (also batches of size 10).

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Compile the model
____

# Fit to training data
____

# Evaluate on test data 
____
Kodu Düzenle ve Çalıştır