BaşlayınÜcretsiz Başlayın

Creating a sequential block

You decided to redesign your binary CNN model template by creating a block of convolutional layers. This will help you stack multiple layers sequentially. With this improved model, you will be able to easily design various CNN architectures.

torch and torch.nn as nn have been imported.

Bu egzersiz

Deep Learning for Images with PyTorch

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • In the __init__() method, define a block of convolutional layers and assign it to self.conv_block.
  • In the forward() pass, pass the inputs through the convolutional block you defined.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

class BinaryImageClassification(nn.Module):
  def __init__(self):
    super(BinaryImageClassification, self).__init__()
    # Create a convolutional block
    self.conv_block = ____(
      nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
      nn.ReLU(),
      nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
      nn.ReLU(),
    )
    
  def forward(self, x):
    # Pass inputs through the convolutional block
    x = ____
    return x
Kodu Düzenle ve Çalıştır