BaşlayınÜcretsiz Başlayın

Plotting distributions

Understanding how both discrete (e.g. binomial) and continuous (e.g. normal) probability distributions play a role in A/B testing enables us to gain additional visual insights into the nature of the data and deeper conceptual understanding of the theories that power the statistical frameworks of online experimentation.

Of great importance are two distributions: the binomial and the normal distributions. Follow the instructions to create plots and explore their parameters.

Bu egzersiz

A/B Testing in Python

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

from scipy.stats import binom 

# Plot a binomial distribution
p = ____
n = ____ 

x = np.arange(n*p - 100, n*p + 100) 
binom_a = ____.____(____, ____, ____)

plt.bar(x, binom_a)
plt.xlabel('Purchased')
plt.ylabel('PMF')
plt.show()
Kodu Düzenle ve Çalıştır