Label encoding
Let's work on categorical variables encoding. You will again work with a subsample from the House Prices Kaggle competition.
Your objective is to encode categorical features "RoofStyle" and "CentralAir" using label encoding. The train
and test
DataFrames are already available in your workspace.
Este exercício faz parte do curso
Winning a Kaggle Competition in Python
Instruções do exercício
- Concatenate
train
andtest
DataFrames into a single DataFramehouses
. - Create a
LabelEncoder
object without arguments and assign it tole
. - Create new label-encoded features for "RoofStyle" and "CentralAir" using the same
le
object.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Concatenate train and test together
houses = ____.____([train, test])
# Label encoder
from sklearn.preprocessing import LabelEncoder
le = ____()
# Create new features
houses['RoofStyle_enc'] = le.fit_transform(houses[____])
houses['CentralAir_enc'] = ____.____(____[____])
# Look at new features
print(houses[['RoofStyle', 'RoofStyle_enc', 'CentralAir', 'CentralAir_enc']].head())