Label encoding
Let's work on categorical variables encoding. You will again work with a subsample from the House Prices Kaggle competition.
Your objective is to encode categorical features "RoofStyle" and "CentralAir" using label encoding. The train and test DataFrames are already available in your workspace.
Este exercício faz parte do curso
Winning a Kaggle Competition in Python
Instruções do exercício
- Concatenate
trainandtestDataFrames into a single DataFramehouses. - Create a
LabelEncoderobject without arguments and assign it tole. - Create new label-encoded features for "RoofStyle" and "CentralAir" using the same
leobject.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Concatenate train and test together
houses = ____.____([train, test])
# Label encoder
from sklearn.preprocessing import LabelEncoder
le = ____()
# Create new features
houses['RoofStyle_enc'] = le.fit_transform(houses[____])
houses['CentralAir_enc'] = ____.____(____[____])
# Look at new features
print(houses[['RoofStyle', 'RoofStyle_enc', 'CentralAir', 'CentralAir_enc']].head())