Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset
) and calculate the accuracy on the test dataset (available in data frame testset
). You will then plot the tuned decision boundary against the test dataset.
Este exercício faz parte do curso
Support Vector Machines in R
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)