ComeçarComece de graça

Comparing estimated and realized performance

Now that you have seen how performance calculation works, your task is to calculate the realized performance for our tip prediction model for the NYC green taxi dataset.

The reference and analysis set is already loaded and saved in the reference and analysis variables.

In addition, results from the DLE algorithm for tip prediction are stored in the estimated_results variable.

Este exercício faz parte do curso

Monitoring Machine Learning in Python

Ver curso

Instruções do exercício

  • Specify problem type as regression in calculator initialization.
  • Fit the calculator with reference data and calculate performance for the analysis set.
  • Show comparison plot between realized_results and estimated_results using compare() method.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Intialize the calculator
calculator = nannyml.PerformanceCalculator(
    y_true='tip_amount',
    y_pred='y_pred',
    chunk_period='d',
  	metrics=['mae'],
    timestamp_column_name='lpep_pickup_datetime',
    problem_type=____)

# Fit the calculator
calculator.fit(____)
realized_results = calculator.____(____)

# Show comparison plot for realized and estimated performance
____.____(____).plot().show()
Editar e executar o código