ComeçarComece de graça

Tuning preparation

Tuning preparation is the foundation for tuning success. There are two main steps in preparing your tuning: marking hyperparameters using tune() in the model specification and creating a grid of hyperparameters that is used in tuning.

You are going to execute these two fundamental steps of the tuning process in this exercise.

Este exercício faz parte do curso

Machine Learning with Tree-Based Models in R

Ver curso

Instruções do exercício

  • Create a boosting specification with an "xgboost" engine for a classification model using 500 trees and mark the following parameters as tuning parameters: learn_rate, tree_depth, and sample_size. Save the result as boost_spec.
  • Build a regular tuning grid for the tuning parameters of boost_spec with three levels for each parameter.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create the specification with placeholders
boost_spec <- boost_tree(
                trees = ___,
                ___,
                ___,
                ___) %>%
  set_mode(___) %>%
  set_engine(___)

# Create the tuning grid
tunegrid_boost <- ___(___, 
                      levels = ___)

tunegrid_boost
Editar e executar o código