ComeçarComece de graça

Random forest performance

It is now time to see whether the random forests models you built in the previous exercise are able to outperform the logistic regression model.

Remember that the validate recall for the logistic regression model was 0.43.

Este exercício faz parte do curso

Machine Learning in the Tidyverse

Ver curso

Instruções do exercício

  • Prepare the validate_actual and validate_predicted columns for each mtry/fold combination.
  • Calculate the recall for each mtry/fold combination.
  • Calculate the mean recall for each value of mtry.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

cv_prep_rf <- cv_models_rf %>% 
  mutate(
    # Prepare binary vector of actual Attrition values in validate
    validate_actual = map(validate, ~.x$___ == "___"),
    # Prepare binary vector of predicted Attrition values for validate
    validate_predicted = map2(.x = ___, .y = ___, ~predict(.x, .y, type = "response")$predictions == "Yes")
  )

# Calculate the validate recall for each cross validation fold
cv_perf_recall <- cv_prep_rf %>% 
  mutate(recall = map2_dbl(.x = ___, .y = ___, ~recall(actual = .x, predicted = .y)))

# Calculate the mean recall for each mtry used  
cv_perf_recall %>% 
  group_by(___) %>% 
  summarise(mean_recall = mean(___))
Editar e executar o código