Techniques for detecting and correcting data drift
In machine learning, it's essential to understand how to maintain a deployed model's performance over time. One familiar challenge practitioners face is data drift, which occurs when the distribution of input data changes. Data drift can lead to decreased model performance and inaccurate predictions.
What are the appropriate steps for detecting and correcting data drift in machine learning models? (Select all that apply).
Este exercício faz parte do curso
End-to-End Machine Learning
Exercício interativo prático
Transforme a teoria em ação com um de nossos exercícios interativos
