ComeçarComece de graça

Nesting by topic and country

In the last chapter, you constructed a linear model for each country by nesting the data in each country, fitting a model to each dataset, then tidying each model with broom and unnesting the coefficients. The code looked something like this:

country_coefficients <- by_year_country %>%
  nest(-country) %>%
  mutate(model = map(data, ~ lm(percent_yes ~ year, data = .)),
         tidied = map(model, tidy)) %>%
  unnest(tidied)

Now, you'll again be modeling change in "percentage" yes over time, but instead of fitting one model for each country, you'll fit one for each combination of country and topic.

Este exercício faz parte do curso

Case Study: Exploratory Data Analysis in R

Ver curso

Instruções do exercício

  • Load the purrr, tidyr, and broom packages.
  • Print the by_country_year_topic dataset to the console.
  • Fit a linear model within each country and topic in this dataset, saving the result as country_topic_coefficients. You can use the provided code as a starting point.
  • Print the country_topic_coefficients dataset to the console.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Load purrr, tidyr, and broom


# Print by_country_year_topic


# Fit model on the by_country_year_topic dataset


# Print country_topic_coefficients
Editar e executar o código