Generating natural answers with abstractive QA
Customer support chatbots aim to provide helpful, conversational answers, not just exact text snippets. To achieve this, they use abstractive question answering, which generates concise and fluent responses based on the context. Your task is to apply Hugging Face's "text2text-generation" pipeline with a model trained for abstractive QA to create natural answers from product information.
Deze oefening maakt deel uit van de cursus
Natural Language Processing (NLP) in Python
Oefeninstructies
- Create a
qa_pipelineusing the"fangyuan/hotpotqa_abstractive"model with the"text2text-generation"task. - Use the provided
contextandquestionto generate an abstractiveanswer.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
from transformers import pipeline
# Create the abstractive question-answering pipeline
qa_pipeline = pipeline(
task="____",
model="____"
)
context = """This smartphone features a 6.5-inch OLED display, 128GB of storage, and a 48MP camera with night mode. It supports 5G connectivity and has a battery life of up to 24 hours."""
question = "What is the size of the smartphone's display?"
# Generate abstractive answer
result = qa_pipeline(f"____: {____} ____: {____}")
print(result)