Aan de slagGa gratis aan de slag

Exploring word relationships with embeddings

Word embeddings capture the meanings of words based on their usage in large text datasets. By placing similar words closer together in a continuous vector space, they allow models to recognize context and semantic relationships that more basic methods can't capture. Now You'll work with embeddings to explore these kinds of word relationships firsthand.

The glove-wiki-gigaword-50 word embedding model has been successfully loaded and is ready for use through the variable model_glove_wiki.

Deze oefening maakt deel uit van de cursus

Natural Language Processing (NLP) in Python

Cursus bekijken

Oefeninstructies

  • Compute the similarity score between "king" and "queen".
  • Get the top 10 most similar words to "computer".

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Compute similarity between "king" and "queen"
similarity_score = model_glove_wiki.____

print(similarity_score)

# Get top 10 most similar words to "computer"
similar_words = model_glove_wiki.____

print(similar_words)
Code bewerken en uitvoeren