Aan de slagGa gratis aan de slag

Lemmatization

While continuing your analysis of user reviews, you noticed that stemming sometimes produces non-standard words like "fli" from "flying", which can reduce interpretability. To address this, you'll now use lemmatization, which returns actual words and helps improve the clarity and accuracy of your analysis.

WordNetLemmatizer has been imported, stop_words has been defined, and the necessary NLTK resources have been downloaded.

Deze oefening maakt deel uit van de cursus

Natural Language Processing (NLP) in Python

Cursus bekijken

Oefeninstructies

  • Create an instance lemmatizer of the WordNetLemmatizer() class.
  • Use the lemmatizer to lemmatize the lower_tokens.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

clean_tokens = ['flying', 'lot', 'lately', 'flights', 'keep', 'getting', 'delayed', 'honestly', 'traveling', 'work', 'gets', 'exhausting', 'endless', 'delays', 'every', 'travel', 'teaches', 'something', 'new']

# Create lemmatizer
lemmatizer = ____()

# Lemmatize each token
lemmatized_tokens = [____.____(____) for ____ in clean_tokens]

print(lemmatized_tokens)
Code bewerken en uitvoeren