Lemmatization
While continuing your analysis of user reviews, you noticed that stemming sometimes produces non-standard words like "fli" from "flying", which can reduce interpretability. To address this, you'll now use lemmatization, which returns actual words and helps improve the clarity and accuracy of your analysis.
WordNetLemmatizer has been imported, stop_words has been defined, and the necessary NLTK resources have been downloaded.
Deze oefening maakt deel uit van de cursus
Natural Language Processing (NLP) in Python
Oefeninstructies
- Create an instance
lemmatizerof theWordNetLemmatizer()class. - Use the
lemmatizerto lemmatize thelower_tokens.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
clean_tokens = ['flying', 'lot', 'lately', 'flights', 'keep', 'getting', 'delayed', 'honestly', 'traveling', 'work', 'gets', 'exhausting', 'endless', 'delays', 'every', 'travel', 'teaches', 'something', 'new']
# Create lemmatizer
lemmatizer = ____()
# Lemmatize each token
lemmatized_tokens = [____.____(____) for ____ in clean_tokens]
print(lemmatized_tokens)