Aan de slagGa gratis aan de slag

Removing punctuation

Now that you've removed stop words from the feedback text, it's time to handle punctuation. The tokens you obtained in the previous exercise still contain punctuation marks, which are often unnecessary when categorizing feedback.

Your task is to remove punctuation from the list of tokens provided, helping to clean up the data even further.

Deze oefening maakt deel uit van de cursus

Natural Language Processing (NLP) in Python

Cursus bekijken

Oefeninstructies

  • Clean the filtered_tokens list by removing all punctuation.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

import string

filtered_tokens = ['reached', 'support', 'got', 'helpful', 'response', 'within', 'minutes', '!', '!', '!', '#', 'impressed']

# Remove punctuation
clean_tokens = [____ for word in filtered_tokens if ____ not in ____.____]

print(clean_tokens)
Code bewerken en uitvoeren