Aan de slagGa gratis aan de slag

Stemming

Now that you've cleaned the review text and removed stop words and punctuation, you're ready to normalize the remaining words using stemming to reduce words to their root form. This helps group similar words together, making your analysis more consistent and efficient.

The PorterStemmer class has been provided, along with a list of clean_tokens.

Deze oefening maakt deel uit van de cursus

Natural Language Processing (NLP) in Python

Cursus bekijken

Oefeninstructies

  • Initialize the PorterStemmer().
  • Use a list comprehension to stem each token from the clean_tokens list.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

clean_tokens = ['flying', 'lot', 'lately', 'flights', 'keep', 'getting', 'delayed', 'honestly', 'traveling', 'work', 'gets', 'exhausting', 'endless', 'delays', 'every', 'travel', 'teaches', 'something', 'new']

# Create stemmer
stemmer = ____()

# Stem each token
stemmed_tokens = [____.____(____) for ____ in clean_tokens]

print(stemmed_tokens)
Code bewerken en uitvoeren