Prep and split
You will be working with the full attrition dataset with 1470 instances of 30 features related to the target variable Attrition, including missing values. The mission is to build a full end-to-end model to predict your target. The dataset is loaded for you.
You'll start by preparing and splitting the data.
Deze oefening maakt deel uit van de cursus
Feature Engineering in R
Oefeninstructies
- Begin by transforming all character values to factors.
- Create train and test splits.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Transform all character values to factors
attrition <-
attrition %>%
mutate(___(where(___), as_factor))
# Create train and test splits
set.seed(123)
split <- initial_split(attrition, strata = Attrition)
test <- ___(split)
train <- ___(___)
glimpse(train)