Aan de slagGa gratis aan de slag

Visualizing variance explained

With all the calculations under your belt, it always comes in handy to represent our data visually. You will now create a column plot showing variance explained by principal component.

The variable_explained vector you created in the last exercise is available, and the ggplot() theme_() is set to classic.

Deze oefening maakt deel uit van de cursus

Feature Engineering in R

Cursus bekijken

Oefeninstructies

  • Use the information in the PCA tibble to create a column plot of variance explained.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

PCA = tibble(PC = 1:length(sdev), var_explained = var_explained, 
       cumulative = cumsum(var_explained))

# Use the information in the PCA tibble to create a column plot of variance explained
PCA %>% ggplot(aes(x = ___, y = ___)) +
  geom_col(fill = "steelblue") +
  xlab("Principal components") +
  ylab("Variance explained")
Code bewerken en uitvoeren