Aan de slagGa gratis aan de slag

Fitting and assessing the model

Now that you have addressed missing values and created dummy variables, it is time to assess your model's performance!

The attritiondataset, along with the testand train splits, the lr_recipe and your declared logistic_model() are all loaded for you.

Deze oefening maakt deel uit van de cursus

Feature Engineering in R

Cursus bekijken

Oefeninstructies

  • Bundle model and recipe in workflow.
  • Fit workflow to the train data.
  • Generate an augmented data frame for performance assessment.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Bundle model and recipe in workflow
lr_workflow <- ___() %>%
  add_model(lr_model) %>%
  add_recipe(lr_recipe)

# Fit workflow to the train data
lr_fit <- ___(lr_workflow, data = train)

# Generate an augmented data frame for performance assessment
lr_aug <- lr_fit %>% ___(test)

lr_aug %>% roc_curve(truth = Attrition, .pred_No) %>% autoplot()
bind_rows(lr_aug %>% roc_auc(truth = Attrition, .pred_No),          
          lr_aug %>% accuracy(truth = Attrition, .pred_class))
Code bewerken en uitvoeren