Setting up your data for analysis
You will look at a version of the nycflights13 dataset, loaded as flights. It contains information on flights departing from New York City. You are interested in predicting whether or not they will arrive late to their destination, but first, you need to set up the data for analysis.
After discussing our model goals with a team of experts, you selected the following variables for your model: flight, sched_dep_time, dep_delay, sched_arr_time, carrier, origin, dest, distance, date, arrival.
You will also mutate() the date using as.Date() and convert character type variables to factors.
Lastly, you will split the data into train and test datasets.
Deze oefening maakt deel uit van de cursus
Feature Engineering in R
Oefeninstructies
- Transform all character-type variables to factors.
- Split the flights data into test and train sets.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
flights <- flights %>%
select(flight, sched_dep_time, dep_delay, sched_arr_time, carrier, origin, dest, distance, date, arrival) %>%
# Tranform all character-type variables to factors
mutate(date = as.Date(date), ___(where(is.character), as.factor))
# Split the flights data into test and train sets
set.seed(246)
split <- flights %>% initial_split(prop = 3/4, strata = arrival)
test <- ___(split)
train <- ___(split)
test %>% select(arrival) %>% table() %>% prop.table()
train %>% select(arrival) %>% table() %>% prop.table()