Aan de slagGa gratis aan de slag

Percent of variance explained

From the pca_output, you can retrieve the standard deviation explained by each principal component. Then, use these values to compute the variance explained and the cumulative variance explained, and glue together these values into a tibble.

The pca_output object is loaded for you.

Deze oefening maakt deel uit van de cursus

Feature Engineering in R

Cursus bekijken

Oefeninstructies

  • Calculate percentage of variance explained leveraging the standard deviation vector.
  • Create a tibble with principal components, variance explained and cumulative variance explained.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

sdev <- pca_output$steps[[3]]$res$sdev
# Calculate percentage of variance explained
var_explained <- ___

# Create a tibble with principal components, variance explained and cumulative variance explained
PCA = tibble(PC = 1:length(sdev), var_explained = ___, 
       cumulative = ___) 
Code bewerken en uitvoeren