Percent of variance explained
From the pca_output, you can retrieve the standard deviation explained by each principal component. Then, use these values to compute the variance explained and the cumulative variance explained, and glue together these values into a tibble.
The pca_output object is loaded for you.
Deze oefening maakt deel uit van de cursus
Feature Engineering in R
Oefeninstructies
- Calculate percentage of variance explained leveraging the standard deviation vector.
- Create a tibble with principal components, variance explained and cumulative variance explained.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
sdev <- pca_output$steps[[3]]$res$sdev
# Calculate percentage of variance explained
var_explained <- ___
# Create a tibble with principal components, variance explained and cumulative variance explained
PCA = tibble(PC = 1:length(sdev), var_explained = ___,
cumulative = ___)