Aan de slagGa gratis aan de slag

Kernel explainer for MLPRegressor

Given your familiarity with the admissions dataset, you will employ SHAP's Kernel Explainer to explain an MLPRegressor trained on this data. This method will allow you to critically assess how different features impact the model's predictions and verify these insights against your existing understanding of the dataset.

X containing the predictors and y containing the admission decisions, along with the pre-trained MLPRegressor model, have been pre-loaded for you.

Deze oefening maakt deel uit van de cursus

Explainable AI in Python

Cursus bekijken

Oefeninstructies

  • Create a SHAP Kernel Explainer using the MLPRegressor model and a k-means summary of 10 samples from X.
  • Generate shap_values for X.
  • Compute the mean absolute SHAP values to identify key factors affecting admissions.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

import shap

# Create a SHAP Kernel Explainer
explainer = ____

# Calculate SHAP values
shap_values = ____

# Calculate mean absolute SHAP values
mean_abs_shap = ____

plt.bar(X.columns, mean_abs_shap)
plt.title('Mean Absolute SHAP Values for MLPRegressor')
plt.xticks(rotation=45)
plt.show()
Code bewerken en uitvoeren