SHAP for explaining income levels
Practice using SHAP to analyze and visualize how each feature influences a trained model's predictions on a single sample from the income dataset, using a waterfall plot for deeper insight into feature contributions.
A trained KNN model is loaded for you. The dataset containing features is loaded in X.
Deze oefening maakt deel uit van de cursus
Explainable AI in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
import shap
# Create the SHAP explainer
explainer = ____
# Compute SHAP values for the first instance in X
shap_values = ____
print(shap_values)