Aan de slagGa gratis aan de slag

Computing feature importance with decision trees

You built a decision tree classifier to identify patients at risk of heart disease using the heart disease dataset. Now you need to explain the model by analyzing feature importance to determine the key factors for predicting heart disease, enabling more targeted healthcare interventions.

matplotlib.pyplot has been imported as plt. X_train and y_train are pre-loaded for you.

Deze oefening maakt deel uit van de cursus

Explainable AI in Python

Cursus bekijken

Oefeninstructies

  • Extract the feature importances from the model.
  • Plot the feature_importances for the given feature_names.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train)

# Derive feature importances
feature_importances = ____
feature_names = X_train.columns

# Plot the feature importances
____
plt.show()
Code bewerken en uitvoeren