Aan de slagGa gratis aan de slag

Permutation importance for MLPClassifier

Your task is to use permutation importance to identify which features are most impactful in predicting heart disease with an MLPClassifier.

X containing the features and y containing the labels have been pre-loaded for you. matplotlib.pyplot has been imported as plt.

Deze oefening maakt deel uit van de cursus

Explainable AI in Python

Cursus bekijken

Oefeninstructies

  • Compute the permutation importance with 10 repeats using a random_state of 1.
  • Plot feature importances with a bar plot.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

from sklearn.neural_network import MLPClassifier
from sklearn.inspection import permutation_importance

model = MLPClassifier(hidden_layer_sizes=(10), random_state=1)
model.fit(X, y)

# Compute the permutation importance
result = ____

# Plot feature importances
____
plt.xticks(rotation=45)
plt.show()
Code bewerken en uitvoeren