Aan de slagGa gratis aan de slag

Computing feature impact with logistic regression

Continuing your work at the insurance company, you built a predictive model to identify whether an individual is a smoker or not. Now, you need to analyze the model to determine the relevant factors influencing smoking status, helping the company assess risk more accurately and tailor insurance policies accordingly.

matplotlib.pyplot has been imported as plt. X_train and y_train are pre-loaded for you.

Deze oefening maakt deel uit van de cursus

Explainable AI in Python

Cursus bekijken

Oefeninstructies

  • Extract the coefficients from the model.
  • Plot the coefficients for the given feature_names.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)

model = LogisticRegression()
model.fit(X_train_scaled, y_train)

# Derive coefficients
coefficients = ____
feature_names = X_train.columns

# Plot coefficients
____
plt.show()
Code bewerken en uitvoeren