Evaluating faithfulness with LIME
You are provided with a LIME explanation for a sample X_instance from the income dataset. Since gender is the most important predictor, you need to change its value and compute faithfulness to determine how well the explanation aligns with the model's behavior for that instance.
Deze oefening maakt deel uit van de cursus
Explainable AI in Python
Oefeninstructies
- Change the gender value to 0 in
X_instance. - Generate a
new_predictionprobability. - Estimate the
faithfulnessof LIME's explanation.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
original_prediction = model.predict_proba(X_instance)[0, 1]
print(f"Original prediction: {original_prediction}")
# Change the gender value to 0
____
# Generate the new prediction
new_prediction = ____
print(f"Prediction after perturbing 'gender': {new_prediction}")
# Estimate faithfulness
faithfulness_score = ____
print(f"Local Faithfulness Score: {faithfulness_score}")