IniziaInizia gratis

Shadow price and slack exercise pt2

In this exercise you are working on the production plan for a company over the next 4 months. Your goal is to determine how much should be produced to minimize the production (fixed + variable), and storage costs while meeting the customers demand. The are constraints on the production capacity and demand each month.

Questo esercizio fa parte del corso

Supply Chain Analytics in Python

Visualizza il corso

Istruzioni dell'esercizio

Complete the code, near the bottom of the sample code, to create a Pandas DataFrame that shows the slack of the constraints.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

model = LpProblem("Production Planning", LpMinimize)
time = [1, 2, 3, 4]
s = LpVariable.dicts("stock_in", [0, 1, 2, 3, 4], lowBound=0, cat="Integer")
x = LpVariable.dicts("prod_in", time, lowBound=0, cat="Integer")
y = LpVariable.dicts("plant_on_", time, lowBound=0, cat="Binary")
model += lpSum([d.loc[t,"unit_prod"]*x[t] + d.loc[t,"unit_inv"]*s[t] 
                + d.loc[t,"fixed_setup"]*y[t] for t in time])
s[0] = 100
for t in time:
    model += s[t-1] + x[t] == d.loc[t,"demand"] + s[t]
    model += x[t] <= d.loc[t,"prod_cap"]*y[t]
model.solve()

# Print the Constraint Slack
o = [{'name':name, 'slack':____} 
     for ____, c in ____]
print(____)
Modifica ed esegui il codice