IniziaInizia gratis

Dropping missing data

Now that you've explored the volunteer dataset and understand its structure and contents, it's time to begin dropping missing values.

In this exercise, you'll drop both columns and rows to create a subset of the volunteer dataset.

Questo esercizio fa parte del corso

Preprocessing for Machine Learning in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Drop the Latitude and Longitude columns from volunteer, storing as volunteer_cols.
  • Subset volunteer_cols by dropping rows containing missing values in the category_desc, and store in a new variable called volunteer_subset.
  • Take a look at the .shape attribute of volunteer_subset, to verify it worked correctly.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Drop the Latitude and Longitude columns from volunteer
volunteer_cols = ____

# Drop rows with missing category_desc values from volunteer_cols
volunteer_subset = ____

# Print out the shape of the subset
print(____.____)
Modifica ed esegui il codice