T-test for difference in means
You're a Data Scientist at an e-commerce company tasked with helping the payments team choose the checkout page design that leads to higher order value and faster purchase decisions.
After estimating the required sample size and passing all sanity checks, you'll analyze differences in the average order_value and time_on_page between checkout_page variants to decide which design performs best.
The checkout DataFrame is available, and pingouin, pandas, and numpy have been loaded for you.
NaN values in order_value may indicate users who didn't complete a purchase. You'll analyze the average order value only among completed orders (complete data).
Questo esercizio fa parte del corso
A/B Testing in Python
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Calculate the mean order values and run a t-test between variants A and B
print(checkout.____('checkout_page')['____'].____())
ttest = ____.____(x=checkout[checkout['checkout_page']=='____']['____'],
y=checkout[checkout['checkout_page']=='____']['____'],
paired=____,
alternative="____")
print(ttest)