Confidence intervals for proportions
Drawing random samples from a population produces slightly different confidence intervals.
The confidence level represents the percentage of the those intervals that capture the true population parameter. For example, we can expect that 90% of the confidence intervals produced at the 90% confidence level to contain the population parameter. pandas, numpy, and proportion_confint have been imported for you.
Questo esercizio fa parte del corso
A/B Testing in Python
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Calculate the average purchase rate for group A
pop_mean = checkout[checkout['____'] == '____']['____'].____()
print(pop_mean)