MulaiMulai sekarang secara gratis

Dropping unnecessary features

Some features such as 'Area_Code' and 'Phone' are not useful when it comes to predicting customer churn, and they need to be dropped prior to modeling. The easiest way to do so in Python is using the .drop() method of pandas DataFrames, just as you saw in the video, where 'Soc_Sec' and 'Tax_ID' were dropped:

telco.drop(['Soc_Sec', 'Tax_ID'], axis=1)

Here, axis=1 indicates that you want to drop 'Soc_Sec' and 'Tax_ID' from the columns.

Latihan ini adalah bagian dari kursus

Marketing Analytics: Predicting Customer Churn in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Drop the unnecessary features
telco = ____
Edit dan Jalankan Kode