MulaiMulai sekarang secara gratis

Improving the plot

In order to make the plot more readable, we need to do achieve two goals:

  • Re-order the bars in ascending order.
  • Add labels to the plot that correspond to the feature names.

To do this, we'll take advantage of NumPy indexing. The .argsort() method sorts an array and returns the indices. We'll use these indices to achieve both goals.

Latihan ini adalah bagian dari kursus

Marketing Analytics: Predicting Customer Churn in Python

Lihat Kursus

Petunjuk latihan

  • Calculate the sorted indices of importances by using np.argsort() on importances.
  • Create the sorted labels by accessing the columns of X and indexing by sorted_index.
  • Create the plot by indexing importances using sorted_index and specifying the keyword argument tick_label=labels.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Sort importances
sorted_index = ____(____)

# Create labels
labels = X.columns[____]

# Clear current plot
plt.clf()

# Create plot
plt.barh(range(X.shape[1]), importances[____], tick_label=____)
plt.show()
Edit dan Jalankan Kode