MulaiMulai sekarang secara gratis

Tuning preparation

Tuning preparation is the foundation for tuning success. There are two main steps in preparing your tuning: marking hyperparameters using tune() in the model specification and creating a grid of hyperparameters that is used in tuning.

You are going to execute these two fundamental steps of the tuning process in this exercise.

Latihan ini adalah bagian dari kursus

Machine Learning with Tree-Based Models in R

Lihat Kursus

Petunjuk latihan

  • Create a boosting specification with an "xgboost" engine for a classification model using 500 trees and mark the following parameters as tuning parameters: learn_rate, tree_depth, and sample_size. Save the result as boost_spec.
  • Build a regular tuning grid for the tuning parameters of boost_spec with three levels for each parameter.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Create the specification with placeholders
boost_spec <- boost_tree(
                trees = ___,
                ___,
                ___,
                ___) %>%
  set_mode(___) %>%
  set_engine(___)

# Create the tuning grid
tunegrid_boost <- ___(___, 
                      levels = ___)

tunegrid_boost
Edit dan Jalankan Kode