Add padding to a CNN
Padding allows a convolutional layer to retain the resolution of the input into this layer. This is done by adding zeros around the edges of the input image, so that the convolution kernel can overlap with the pixels on the edge of the image.
Latihan ini adalah bagian dari kursus
Image Modeling with Keras
Petunjuk latihan
Add a Conv2D layer and choose a padding such that the output has the same size as the input.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# Initialize the model
model = Sequential()
# Add the convolutional layer
model.add(____(10, kernel_size=3, activation='relu',
input_shape=(img_rows, img_cols, 1),
____))
# Feed into output layer
model.add(Flatten())
model.add(Dense(3, activation='softmax'))