MulaiMulai sekarang secara gratis

Perform hyperparameter tuning with mlr

Now, you can combine the prepared functions and objects from the previous exercise to actually perform hyperparameter tuning with random search. The knowledge_train_data dataset has already been loaded for you, as have the packages mlr, tidyverse and tictoc. And the following code has also been run already:

# Define task
task <- makeClassifTask(data = knowledge_train_data, 
                        target = "UNS")

# Define learner
lrn <- makeLearner("classif.nnet", predict.type = "prob", fix.factors.prediction = TRUE)

# Define set of parameters
param_set <- makeParamSet(
  makeDiscreteParam("size", values = c(2,3,5)),
  makeNumericParam("decay", lower = 0.0001, upper = 0.1)
)

Latihan ini adalah bagian dari kursus

Hyperparameter Tuning in R

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Define a random search tuning method.
ctrl_random <- makeTuneControlRandom(___ = ___)
Edit dan Jalankan Kode